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In this paper an experimental analysis of two different indirect evaporative cooling (IEC) systems is car-
ried out: in the first one plates heat exchanger are finished with a standard epoxy coating (STD) while
in the second one a novel hydrophilic lacquer is adopted (HPHI). Firstly, static contact angles, water re-
tention and transient drop-surface interaction of both materials are evaluated. Secondly, IEC systems per-
formance is measured in different operating conditions and, in particular, varying the water flowrate and

Keywords: nozzle position (top and side).

Indirect Evaporative Cooler Results highlight that contact angles of HPHI coating are always lower than the ones of STD treat-
IEC ment: according to these findings, in case of water distribution from the top of the IEC system, wet bulb
Wettability effectiveness of HPHI device is higher than that of STD unit (up to 10%). Instead, in case of water flow
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supplied from the side of the system, no significant differences have been observed.
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1. Introduction

High-density data centers are energy intensive infrastructures:
in 2010 they accounted for 1.1% - 1.5% of worldwide electricity use,
doubling from 2000 to 2005 and increasing by about 56% from
2005 to 2010 (Koomey, 2011). The worldwide electricity consump-
tion of data centers has been estimated around 270 TWh in 2012
and it is expected to increase in the next years due to the growth
of IT services (Van Heddeghem et al., 2014).

Because of high heat fluxes dissipated by IT equipment, energy
use of cooling devices is particularly relevant: electricity consump-
tion of such systems has been evaluated around 40% of total en-
ergy consumption, with peaks even around 60% (Salim and Tozer,
2010). Therefore, improving the cooling process of the facility is a
key issue that should be addressed in the next years to achieve
significant energy savings in data centers.
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At present, there is a great interest in the use of indirect evap-
orative cooling (IEC) systems in IT facilities. In fact, since the revi-
sion of the thermal guidelines for data processing environment by
ASHRAE (ASHRAE 2008), the allowed indoor temperature and hu-
midity ranges have been expanded, promoting the use of the afore-
mentioned cooling technology. IEC systems are already effectively
used in several applications, such as energy recovery units (Duan
et al., 2012), power production (Najjar and Abubaker, 2015) or in
desiccant/evaporative cooling open cycles (Chung and Lee, 2011;
Goldsworthy and White, 2011).

In an indirect evaporative cooler, two airflows enter the system,
denoted as the primary air and the secondary air streams. The
primary air, which is supplied to the data center, flows along the
dry channels of the heat exchanger. Instead, the secondary air is
put in direct contact with water that flows in the wet channels
of the system. Water evaporation leads to the cooling of the
secondary airstream, and, due to the heat transfer across heat
exchanger plates, of the primary airflow, whose humidity ratio
keeps constant.
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Nomenclature

A-E experimental tests in wet conditions
cp specific heat (k] kg~! K-1)

Jfeva fraction of evaporated water (-)
h channel height (m)

L net plates length and width (m)
M mass flow rate (kg s—1)

Ny mumber of plates (-)

pt plates pitch (mm)

0] volumetric flow rate (m3 h—1)
RH relative humidity (-)

T dry bulb temperature (°C)

Twp wet bulb temperature (°C)

u experimental uncertainty

X; generic measured quantity (-)
X humidity ratio (kg kg=1)

Vi generic calculated quantity (-)
Greek letters

1) plates thickness (m)

Edb dry bulb effectiveness (-)

Ewb wet bulb effectiveness (-)

0 contact angle (°)

o variance

Superscripts

N reference condition (p =1.2kg m~3)
Subscripts

a air

eva evaporated water

in inlet

inst instrumental

min minimum

net net

out outlet

p primary air stream

S secondary air stream

w water

X; generic measured quantity

Xi mean of generic measured quantity
Vi generic calculate quantity
Acronyms

ADSA  Axisymmetric Drop Shape Analysis technique

ADSA-P Axisymmetric Drop Shape Analysis technique - Pro-

file
HPHI HydroPHlIlic coating/device
IEC Indirect Evaporative Cooling/Cooler

MAD Mean Absolute Deviation

SIDE SIDE configuration

STD STanDard (epoxy) coating/device
TOP TOP configuration

Performance of the indirect evaporative cooling system is signif-
icantly related to water layer formation on heat exchanger plates,
as discussed through numerical and experimental analysis in sev-
eral scientific papers. Research studies highlighted that higher
plates wettability remarkably enhances the indirect evaporative
cooler performance (Guo and Zhao, 1998; Chengqin and Hongxing,
2006; Chua et al., 2016; De Antonellis et al., 2016; De Antonellis
et al., 2017). The increase in the surface wettability factor, namely
the wet to total area ratio, can be obtained mainly by: i) increasing
the water flow rate (De Antonellis et al., 2016; De Antonellis et al.,
2017), ii) using innovative materials or coatings (Zao et al., 2018;

Lee and Lee, 2013); iii) adopting a proper system orientation (Li
et al.,, 2018).

Several studies investigate the effect of different materials used
to realize heat exchanger plates, in order to foster the wetting
of the surface and the water evaporation (Zao et al., 2018; Wang
et al,, 2017; Xu et al.,, 2016; Xu et al,, 2017; Lee and Lee, 2013). In
particular, Zao et al. (2018) examined several types of substances
to be used in IEC systems, suggesting a wick attained material
(copper or aluminum) to promote heat and mass transfer. Wang
et al. evaluated performance of a novel porous ceramic tube type
indirect evaporative cooler and highlighted that the use of a hy-
drophilic coating leads to significant improvement of performance
compared to conventional configurations (Wang et al.,, 2017). Xu
et al. analyzed seven textile fabrics for IEC applications, conclud-
ing that some investigated samples have a great potential to in-
crease system effectiveness (Xu et al,, 2016). They also evaluated
the performance of an innovative prototype (Xu et al., 2017) with
plates made of aluminum alloy and Coolmax® fibre, showing im-
proved effectiveness compared to commercial devices. Finally, Lee
and Lee (2013) and Li et al. (2018) developed innovative high per-
formance IEC systems applying a hydrophilic coating to heat ex-
changer plates.

According to the aforementioned researches (Zao et al., 2018;
Wang et al.,, 2017; Xu et al.,, 2016; Xu et al., 2017; Lee and Lee,
2013), in IEC applications the study of material affinity for wa-
ter is very important, in particular in terms of hydrophilicity
and water retention on the plate. Droplet evaporation has been
widely studied, under both constant wall heat flux and surface
temperature and a reference to most significant papers can be
found in Guilizzoni and Sotgia (2010). Instead, focusing the at-
tention on recent papers specifically dealing with the effect of
surface wettability, the review by Edalatpour et al. summarizes
main achievements (Edalatpour et al., 2018). Lee et al. (2017) ex-
perimentally confirmed that also on transparent heaters the to-
tal evaporation time of a droplet on a hydrophilic surface is usu-
ally shorter compared to a hydrophobic surface, likely due to the
long pinned phase and lower drop height that increase the av-
erage contact area between drop and surface and the drop-air
interface temperature. This is consistent with a dominantly con-
ductive heat transfer across the drop, as already assumed in pi-
oneering works (see e.g. the works by Di Marzo and Tartarini
among the already cited references in (Guilizzoni and Sotgia,
2010)) and also recently confirmed by further numerical studies
(Lu et al., 2011; Yang et al, 2014) and experimental researches
on engineered surfaces (Guilizzoni et al., 2018). In addition, Gao
et al. (2017) confirmed that the droplet evaporation time decreases
by increasing the wall heat flux and that the evaporation time
on hydrophobic surfaces is higher than the one of hydrophilic
surface.

The purpose of this study is to investigate the performance of
an indirect evaporative cooler based on an aluminum alloy plate
heat exchanger with two different surface coatings. For this objec-
tive, a system with hydrophilic coating is compared with one with
a conventional epoxy lacquer. First, surface coating characteristics
in terms of droplet contact angle and water retention are ana-
lyzed, then the IEC effectiveness is investigated. The experimental
analysis is carried out at different operating conditions and, in
particular, varying the water flowrate and nozzle position, which
influence the device performance (De Antonellis et al, 2016;
De Antonellis et al., 2017; Li et al., 2018).

Results provide significant information to improve the design
and the management of indirect evaporative cooling systems. Al-
though the research work is focused on data centers, the find-
ings can be effectively used to optimize IEC systems in other
applications.
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Fig. 1. Investigated IEC systems. Scheme of TOP (A) and SIDE (B) configuration and picture of the tested system (C).
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Fig. 2. Detail of secondary air inlet plenum. Scheme (A) and picture (B) of nozzles and manifolds.

2. IEC system description

The indirect evaporative cooler is a device used to cool an air
stream, generally denoted as primary flow, through an air-to-air
heat exchanger crossed by a secondary airflow, which is humidi-
fied with liquid water. The IEC system investigated in the present
research consists of the following components: (i) a cross flow heat
exchanger; (ii) eight nozzles suppling water to the secondary air
stream; (iii) a pumping unit to increase water pressure. Water is
appropriately supplied in the secondary air inlet plenum, in order
to reach high evaporation rate and to cool the airflow both before
and along the heat exchanger.

In the present research two different arrangements of the IEC
system have been investigated, denoted as TOP and SIDE configu-
ration, as shown in Fig. 1. In the first case, secondary air enters the
system from the top plenum and moves downward to the bottom.
Water nozzles are installed in the top plenum and the primary air-
flow crosses the heat exchanger in horizontal direction. Instead, in
the second configuration the secondary air stream enters in a lat-
eral plenum and leaves the system from the opposite one. Water
is supplied in the secondary air inlet plenum while the primary
airflow moves from the top to the bottom of the system.

In both configurations (TOP and SIDE), eight water nozzles (ax-
ial full cone type) are installed in counter current arrangement
with respect to the secondary airflow. As shown in Fig. 2, noz-
zles are installed on two water manifolds, mounted 15 cm far from
heat exchanger face, with a space step of 8cm. Each nozzle pro-
vides 7.50 1 h~! when water pressure is equal to 9bar. The length

Table 1

Main heat exchanger data (STD and HPHI).
Description STD HPHI
Material Aluminium alloy

Coating Epoxy coating ~ Hydrophilic lacquer
Plates dimples Semi spherical
Net plates length and width - L 790 mm

Plates number - Ny 72

Plate thickness - § 0.15 mm
Plate pitch - pt 3.40 mm
Channel height - h=pt- § 3.25 mm

of top and side plenums is 60 cm and the length of the bottom one
is equal to 100 cm.

Finally, IEC systems based on two different heat exchangers
have been investigated. Both components are made of aluminium
alloy and have the same geometry: the first one (denoted as STD)
is varnished with a conventional epoxy coating while the sec-
ond one (denoted as HPHI) is finished with a hydrophilic lacquer.
Geometric data of both heat exchangers are reported in Table 1
and detailed characterization of the plate materials is discussed in
Section 3. Note that due to the limited airflow rates that can be set
through the test rig (up to 2000 m3 h~1, as discussed in Section 4),
a small number of plates is adopted in order to have a representa-
tive air velocity along the heat exchanger.

Finally, combining the two configurations (TOP and SIDE) and
the two heat exchangers (STD and HPHI), four different systems
have been analysed:
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Configuration TOP and STD.
- Configuration TOP and HPHI.
Configuration SIDE and STD.
- Configuration SIDE and HPHL

Measured system performances are reported and discussed in
Section 4.

3. Characterization of the heat exchanger plates material
3.1. Investigated parameters

According to the literature survey of Section 1, performance of
the IEC system is primarily related to surface wettability, that in
this work was consequently investigated in terms of contact angles,
water retention and drop-surface interaction through photographic
and high-speed video acquisitions. Static “as placed” (Tadmor and
Yadav, 2008) contact angles were measured by the axisymmetric
drop shape analysis (ADSA) technique in its “profile” (ADSA-P) di-
mensionless version (Rotenberg et al., 1983; del Rio and Neumann,
1997; Guilizzoni, 2011; Laplace, 1806; Santini et al., 2013), while
high-speed videos were used to study drop-surface interactions
during deposition and low speed impact.

3.2. Experimental procedure and setup

A detailed description of the theoretical aspects of ADSA-P and
of the experimental setup and measurement procedures used in
this work can be found in Rotenberg et al. (1983), del Rio and
Neumann (1997), Guilizzoni (2011), so only a very brief summary
will be given here. The ADSA-P contact angle measurement proce-
dure is based on performing multiple integrations of the Laplace-
Young equation (Laplace, 1806) in function of one or more pa-
rameters and on fitting the obtained theoretical drop profiles to
the experimental drop contour. The latter is extracted from a side
view photograph of a sessile drop resting on the surface of interest.
Thus the values of the parameter(s) giving the “correct” drop pro-
file can be estimated. As no closed solution is known for the drop
Laplace-Young equation, numerical integration is required, that is
typically performed on the axisymmetric dimensionless Laplace-
Young equation written in the turning angle - arc-length coordi-
nate system (Rotenberg et al., 1983). In this work, such equation
was integrated using a basic finite difference scheme and the re-
sult fitted in a least square sense to the experimental drop contour.
Once the final drop profile is calculated, the value of the turning
angle at the intersection between the calculated drop profile and
the baseline (horizontal line at the level of the supporting surface,
manually identified by the user) is the measured contact angle.
Further details about the technique, including comments about its
possible issues and limitations can be found in literature (del Rio
and Neumann, 1997; Guilizzoni, 2011; Laplace, 1806; Santini et al.,
2013). Concerning the accuracy, tests on repeated measurements
with the same drop and with repeated drop depositions allowed
to estimate an overall mean absolute deviation (MAD) under 1°.

The drop-surface pictures needed for the described procedure
were obtained using a customized rig. A high precision metering
pump (Cole-Parmer Instrument Company, model AD74900) with
suitable Hamilton syringes was used to generate drops of con-
trolled volume (around 1.1 10-8 m3 = 11 pl), while a halogen lamp
equipped with a diffuser provided the light needed for the photo-
graphic and video acquisitions.

The photographs for contact angle measurement were taken us-
ing a Nikon D90 SLR digital camera equipped with a Nikkor 60 mm
F2.8 Micro lens. The use of such a set-up, instead of a common
commercial contact angle protractor, is aimed at reducing the typ-
ical issues affecting the sessile drop technique, i.e. focus, lighting

r:i\‘

@)

Fig. 3. Side views of sessile drops on the investigated surfaces in dry conditions,
with back illumination as used for contact angle measurement and with front illu-
mination to better evidence the drop configuration: (a) on STD surface, with fitted
contour superposed to the photo and indication of the contact angles; (b) on HPHI
surface; (c) on STD surface.

and baseline identification problems. A side shot of the deposited
drop and one of the dry surface alone are first of all acquired. Us-
ing ad hoc software their pixel-wise difference is calculated, seg-
mented in drop and background and used to extract the drop con-
tour to be fitted with the Laplace-Young equation.

Dynamic drop-surface interaction was evaluated by means of
high-speed videos using a Phantom Miro C110 camera, equipped
with the same Nikkor 60 mm F2.8 Micro lens. Videos were ac-
quired at a resolution of 1024 x 768 px, at 1200 fps with an ex-
posure time of 820 pis.

The surfaces were investigated after cleaning with alcohol, thor-
ough rinsing in distilled water and drying by 10s exposure to an
infrared lamp, cooling down to ambient conditions. Drop impact
onto the surfaces were also analysed after immersion of the latter
in distilled water followed by 10s free de-wetting in air in verti-
cal orientation. This allows water to leave the surface apart from
the case of highly wettable surfaces on which a thin film remains.
Some pictures of the heat exchanger plates after use were finally
acquired, in this case using the D90 camera with a 18-105 Nikkor
lens.

3.3. Experimental results

Fig. 3 shows some drop side views on the two surfaces. Panel
a) is for the STD sample with back illumination as used for contact
angle measurement; the fitted contour and the indication of the
contact angles are superposed to the photo; panel b) and c) are
with front illumination to better evidence the drop configuration,
the first for the HPHI surface and the second for the STD surface.
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Fig. 4. Static “as placed” contact angles measured on the HPHI and STD surface
samples.

A very slight “pinning on sharp edges effect”, resulting in a
larger apparent contact angle when the surface grooves (resulting
from manufacturing) are dominantly oriented parallel to the
direction of view, can be observed in some cases when drops are
very gently deposed on the surface. This effect becomes absolutely
negligible as soon as the drops have an even minimum impact
velocity, so it is not of interest from the point of view of the real
applications (also considering that in real heat exchangers plate
orientation can vary). Therefore, the data in the following will be
presented without distinction between groove directions.

Fig. 4 reports the results of contact angle measurement (as al-
ready said in terms of static “as placed” contact angles) on the two
surfaces.

On the HPHI surface the mean contact angle is 57.8°, with a
standard deviation of 2.4°; on the STD surface the mean contact
angle is 77.8°, with a standard deviation of 2.5°

The measurement thus confirm that the static wettability is sig-
nificantly different between the two surfaces, with the HPHI sam-
ple showing a mean contact angle 20° lower than the STD one. Re-
lated to this, and even more significant, is the different behaviour
in terms of water retention: after complete coverage with water,
when the sample is oriented in vertical position, the STD surface
undergoes a very fast and effective autonomous de-wetting, with
water immediately breaking up in isolated drops. On the contrary,
the HPHI surface remains covered by a water film until the latter
evaporates. In real operating conditions, the plates in the heat ex-
changer are continuously wet by impinging drops, so this aspect
changes completely the wetting behaviour and is likely to play a
fundamental role on heat exchanger performance.

Therefore, the surfaces were further analysed with respect to
drop impact using high-speed cinematography. Fig. 5 shows four
frame sequences on the STD and HPHI surfaces in dry conditions
(denoted as dry surface) and after immersion in distilled water and
positioning in vertical orientation, without any active drying to re-
move possible water films (denoted as wet surface).

It is evident how the impact behaviour is very similar for the
dry STD and HPHI surfaces and also for the STD surface after wet-
ting. For the latter, a small drop is visible in the pictures near to
the left boundary of the surface: as already said, during de-wetting
residual water assumes the shape of isolated drops. On the con-
trary, for the HPHI surface a film is left covering the sample and
the impact behaviour is completely different.

4. IEC system performance
4.1. Test rig and experimental methodology

Two dedicated air handling units are used to control primary
and secondary air conditions through heating coils and cooling
coils, evaporative humidifiers and electric heaters. Primary and
secondary airflow rates are controlled by variable speed fans and
maximum values are 1400 m3 h~! and 2000 m3 h-!. A detailed
description of the test rig is reported in previous research works
(De Antonellis et al., 2016; De Antonellis et al., 2017).

Each flow rate is measured through two orifice plates and piezo
resistive pressure gauges (accuracy of 0.5% of reading +1Pa), in-
stalled according to standards (DIN EN ISO 5167-2 Standards 2003).
Two coupled temperature (PT 100, accuracy of +0.2°C at 20°C)
and relative humidity (£1% between 0 and 90% at 20°C) probes
are installed at the inlet and outlet of each air stream. In each duct
section, air states are calculated as the average of values provided
by the two sensors. Finally, the water flow rate from the nozzles
is measured using a turbine flow sensor (accuracy of 3% of the
reading).

Each physical quantity is collected in steady state conditions at
a frequency of 1Hz (at least 300 samples). Results of each test are
considered acceptable when the difference of calculated energy ex-
changed by primary and secondary airflows is within 5%.

The uncertainty u of directly measured quantities x; (i.e. T, RH,
p) and of calculated quantities y; (i.e. X, €,p) is estimated in ac-
cordance with international standards (ISO IEC Guide 98-3 2008,
Evaluation of measurement data 2008):

ty = £\Jud, + (tos 0%) ()

2 2
ay; ay;
Uy, = \/Z (ay)é”xbinst) + 135 Z <3i;‘7xi> (2)

4.2. Test conditions and performance indexes

Several tests of the IEC systems have been carried out in or-
der to evaluate the performance of adopted configuration (TOP and
SIDE) and heat exchanger plates coating (STD and HPHI). As re-
ported in Table 2, primary and secondary air inlet states and wa-
ter flow rate have been set in order to reproduce representative
data center operating conditions. Inlet dry bulb air temperature
and humidity ratio are set with a tolerance respectively of £ 1 °C
and + 0.5g kg~1.

In tests A, B and C, secondary air inlet dry bulb temperature,
wet bulb temperature and humidity ratio have been varied two by
two. In particular, in conditions A and B there is the same dry bulb
temperature, in A and C the same humidity ratio and in B and C
the same wet bulb temperature. Finally, in test D primary air inlet
temperature is increased compared to test A while in test E the
secondary air flow rate is raised with respect to test B.

In this research, performance is evaluated through the follow-
ing parameters: wet bulb effectiveness ¢, fraction of evaporated
water feyq and dry bulb effectiveness &4, which are defined as

Tp in — Tp out
e -5 = 3
o Tp.in - Twh‘s.in ( )
M (Xs out _Xs in)
fova = === =2 (4)
Mw,in
Mpcpp(Tyin — T,
£y = pCPp( p.in D.out) (5)

B (Mcp)min(Tp,in - Ts.in)



372

HPHI - dry surface

HPHI - wet surface
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STD - dry surface STD - wet surface

Fig. 5. Impact sequences on the STD and HPHI surfaces in dry conditions and after thorough wetting and autonomous de-wetting, but no active drying. Time interval between
the following frames along each column is 3.3 ms, exposure time for each frame is 820 ps. Frames were post-processed in terms of brightness, contrast and sharpness for

better visualization.

Table 2
Adopted test conditions.
Test Condition Ts,in [OC] wa,s,in [OC] Xs,in [g kgq] RHs,in [%] QsN [m3 hil] Tp,in [GC] Xp,in [g kgill QLV [m3 hil] Qw,in [l hi]]
A 30.0 19.9 10.6 40.0 1200 35.0 10.0 1200 29-58
B 30.0 220 134 50.0 1200 35.0 10.0 1200 29-58
C 36.8 220 10.6 273 1200 35.0 10.0 1200 29-58
D 30.0 19.9 10.6 40.0 1200 40.0 10.0 1200 29-58
E 30.0 220 134 50.0 1800 35.0 10.0 1200 29-58

4.3. Experimental results

Preliminary tests have been performed to evaluate heat ex-
changers performance in dry conditions (no water supplied in
the secondary inlet air plenum). In case of balanced airflows at
QN=1200 m® h~' and inlet temperatures equal to 20 °C and
42 °C, although the two devices have the same geometry, the
measured dry bulb effectiveness was equal to 64.3% and 66.2%,
respectively for HPHI and STD heat exchanger. Such variation is
probably related to the manual manufacturing process of the two
prototypes, which can lead to slightly different plates pitch and
alignment, and, consequently, performance.

In Fig. 6 performances of the IEC system as a function of oper-
ating conditions are shown. Results are reported for TOP configura-
tion and HPHI. A detailed analysis of ¢,,, and feyq trends for tests A,
B, C and E, related to the variation of secondary air inlet conditions,
has been discussed in previous works of the authors (De Antonellis
et al.,, 2016; De Antonellis et al., 2017; Comino et al., 2018). There-
fore, hereinafter only the main considerations are summarized:

- An increase in Qw,,»n leads to an increase in the amount of evap-
orated water and, therefore, in &,,.

- At constant dry bulb temperature, an increase in X;;, leads to
an increase in &,,,, mainly related to the higher T, (A-B).

- At constant wet bulb temperature, the higher the dry bulb tem-
perature, the lower the heat transferred and, consequently, €,
(B-C).

- At constant inlet condition, if secondary air inlet dry bulb tem-
perature is lower than the primary air one, an increase in the
secondary airflow rate leads to an increase in &, thanks to the
higher heat transfer rate (B-E).

Finally, an increase in the primary air inlet temperature leads to
a higher water evaporation rate and cooling capacity, while the wet
bulb effectiveness keeps almost constant for a given water flow
rate (B-D).

In next Figs. 7 and 8, performance of investigated IEC systems
are compared in two representative conditions, namely A and E.
Configuration TOP is analysed in Fig. 7, showing that HPHI per-
forms better than STD. In fact, in the first case, due to the hy-
drophilic coating, a uniform water layer forms on heat exchanger
plates, promoting water evaporation and leading to a higher cool-
ing capacity. Differences are significant in case of limited wa-
ter flow rate (around 30-35 1 h~!), where the wet bulb effec-
tiveness deviation reaches 10%. In case of higher water flow rate
(around 55 1 h~1), plates wetting of STD improves and differ-
ences in wet bulb effectiveness are reduced, even if they are still
around 4-7%. Consequently, in case of TOP configuration and in the
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Fig. 8. SIDE configuration: Comparison of wet bulb effectiveness and fraction of evaporated water between HPHI and STD heat exchanger.
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Fig. 10. Pictures of a HPHI plate after some weeks use with water injected from the top, evidencing the limescale deposits. Images were post-processed to increase sharpness.

investigated water flow conditions, the use of a heat exchanger
with hydrophilic coating leads in any case to higher performance
and is strongly recommended.

In Fig. 8, performance of HPHI and STD are compared in case
of SIDE configuration: experimental results highlight that there is
not a significant variation between the two devices and that ¢, is
always lower than one of TOP configuration (around 10%). In fact,
in both cases plates wetting is poor because water, due to grav-
ity force, rapidly moves downward without being able to form an
effective water film along the whole horizontal extension of the
heat exchanger. In case of test E, wet bulb effectiveness of STD
is even higher than one of HPHI: such result is mainly related to
the higher ¢4, and to the experimental uncertainty. Therefore, SIDE
configuration is not suggested due to poor performance compared
to TOP one. In addition, if SIDE arrangement should be selected
due to specific technical issues, the hydrophilic coating will not
contribute to improve IEC system performance.

4.4. Plates conditions after use

To acquire further information in support of the conclusions,
the two heat exchangers have been disassembled after some
weeks of laboratory use, to observe the conditions of their plates.
Figs. 9 and 10 show some photographs of such plates, in the case
of TOP configuration. Particularly from the enlarged pictures it is
evident how the limescale deposits are quite different between the
two surfaces, confirming the different wetting behaviour. On the
STD surface, the sediments are thicker and more localized, due to
the lower hydrophilicity of the surface and its fast de-wetting, and
deposited water moves along preferential paths. On the contrary,

the limescale deposit in the HPHI case is much more widespread
and almost all the surface is covered either by a thin layer or by a
sort of “dust”.

5. Conclusions

In this work a detailed experimental analysis of two different
indirect evaporative cooling (IEC) systems is carried out. In the
two systems the heat exchangers plates are finished in a different
way: a standard epoxy coating (STD) or a novel hydrophilic lacquer
(HPHI) are adopted. The analysis is carried out through the follow-
ing approach:

- Static contact angles, water retention and transient drop-
surface interaction of both materials are evaluated.

- Performance of the two IEC systems is measured in different
operating conditions and varying the water flowrate and nozzle
position (top and side).

From the point of view of wettability, the HPHI surface is
characterized by a significant increase of the hydrophilicity. The
static contact angle on carefully cleaned and dried samples is
lowered by around 20° and in particular the de-wetting behaviour
is completely different: after contact with water, the HPHI surface
remains covered by a liquid film, while an effective autonomous
de-wetting happens on STD samples. This feature completely
changes the spreading of drops on the surface. The different in-
teraction with water between STD and HPHI surfaces is confirmed
also by the different appearance of the limescale deposits that
were observed on the plates after use. As during real operation
heat exchanger plates are in continuous contact with water (in
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the form of mist and impinging drops), it is likely that this aspect
plays a fundamental role on heat exchanger performance.

This behaviour was confirmed by tests of the indirect evapo-
rative cooler: in case of secondary air and water flow supplied
from the top of the system, performance of the device manufac-
tured with HPHI coating is significantly higher (up to 10%). Water
flows downward and, due to the improved plate’s wettability, wet
bulb effectiveness measured in case of HPHI material is higher, in
particular at low water flow rates. More precisely, in case of test A
(Ts,;n =30°C, RHy;, =40%, Ty =35°C, QN =1200 m3 h~1), wet bulb
effectiveness values, at QW_,»,, equal to 29 and 58 1 h™1, are respec-
tively equal to:

- 78.4% and 84.4% for HPHI system.
- 65.7% and 77.1% for STD system.

Instead, in case of secondary air and water flow supplied from
the side of the system, no significant differences are shown. In
fact, in this case water reaches directly the bottom of the heat ex-
changer and it does not form a layer on heat exchanger plates, in-
dependently on superficial treatment. In case of test A, wet bulb
effectiveness values (Qw,in equal to 29 and 58 1 h~1) are respec-
tively equal to:

- 57.3% and 69.6% for HPHI system.
- 54.5% and 67.3% for STD system.

Based on the experimental analysis discussed in this research,
in the investigated conditions the use of a heat exchanger with hy-
drophilic coating arranged in the TOP configuration leads to the
highest performance and, therefore, it is strongly recommended.
Instead, the SIDE configuration, independently on heat exchanger
coating, is not suggested due to poor performance compare to the
TOP one.

Finally, although IEC performance is strongly influenced by op-
erating conditions and system configuration and orientation, based
on experimental results of this study, it is expected that HPHI coat-
ing can improve performance of a generic IEC device, in particular
in case of low and vertical (downstream) water flow.
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